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1. Objectives: Our research on moving boundary problems in crys- 
tal growth aims to develop and implement new numerical methods which 
produce better accuracy for a given cost. 

2. Status of effort: We have developed efficient and accurate new 
methods in several subareas of crystal growth. These include spectral meth- 
ods for phase field models, new vortex methods for convection in the melt, 
and related quadrature and interpolation techniques. 

3. Accomplishments/New Findings: We have made substantial 
progress in two areas of our project; spectral methods for phase field mod- 
els of phase transitions and vortex methods for computing convection in the 
melt. In the first area, we have developed two accurate and efficient new spec- 
tral methods for general parabolic systems of partial differential equations in 
periodic geometry and applied them to solve phase field models for crystal 
growth. In the second area, we have developed three new vortex methods 
for computing convection in the melt at high Reynolds numbers and tested 
them on flows without boundaries. We now summarize these results in more 

detail. 



Phase field models for crystal growth 

• We have developed new classes of accurate and efficient spectral meth- 
ods for nonlinear parabolic systems of partial differential equations 

Ut = F(t,x,U,dU,d2U) 

with F a nonlinear elliptic operator in periodic geometry. Our methods 
discretize this problem—considered as an ODE in an infinite-dimensional 
space—in time with a high-order accurate, linearly-implicit, stiffly-stable 
ODE solver. This gives a sequence of linear variable-coefficient elliptic sys- 
tems which are solved by a technique developed under support from this 
grant [3]. The technique of [3] is efficient, requiring only 0(Nd log N) op- 
erations to obtain the numerical solution on a JV x Ar x... x JV grid in d 
dimensions, and spectrally accurate in the sense that the error is 0(N~P) 
for every p > 0 if the solution is smooth. The basic idea is to transform 
the elliptic system into an equation involving only bounded operators, then 
discretize. The discrete problem has a condition number which is bounded 
as TV -»■ oo, hence can be efficiently solved by standard iterative methods 

such as GMRES. 
• We have implemented a variable-step variable-order version of our 

method for parabolic systems and applied it to solve general crystal growth 
models of phase field type. Variable step sizes are vital to solving phase field 
models, because solutions vary on vastly different time scales during different 
regimes of the evolution. Typically initial fast transients give way to a front 
evolution problem, which is superseded at very long time spans by a slow ge- 
ometric smoothing known as "ripening" in metallurgy. Similar phenomena 
occur in the increasingly significant phase field models of superconductivity. 

Two major objectives of this work are parameter identification and model 
validation. Parameter identification addresses the question of how to set the 
various parameters in phase field models to correspond with a given physical 
experiment. In particular, does the interfacial thickness have to be the phys- 
ical thickness of the interface between the solid and liquid phases? Model 
validation involves predicting experimentally verifiable differences between 
the various phase field models available for modelling the same physical ex- 
periment. This helps identify viable theories and eliminate duplication. Our 
numerical techniques have now reached the point where these two major 

objectives can be addressed. 



A paper [4] based on this work has appeared in J. Comput. Phys. and a 
second paper [5] is in preparation. A summary of [4] follows. 

Many physical problems are naturally formulated as systems of nonlin- 
ear parabolic partial differential equations. Phase field models for crystal 
growth and alloy solidification, Ginzburg-Landa.ii models for superconductiv- 
ity, reaction-diffusion systems for chemical processes and the Navier-Stokes 
equations of fluid mechanics are good examples. In some of these problems, 
periodic boundary conditions can be assumed for convenience. 

Solving these problems numerically requires massive amounts of com- 
puter time and memory, making faster or more accurate methods extremely 
interesting. However, there are well-known dilemmas in constructing such 
methods. Explicit methods cost little per time step but require tiny time 
steps for stability. Implicit methods are less subject to stability restraints, 
but each step requires solution of a large system of equations. Low-order 
accurate methods are easy to program but require many degrees of freedom 
and many time steps. Highly accurate methods such as spectral methods 
can use fewer degrees of freedom and fewer time steps but require smooth 

solutions and are difficult to use efficiently. 
This paper presents a numerical method for computing smooth solutions 

of the general second-order nonlinear parabolic system of partial differential 

equations 
(1) dtu = F(t, x, u, Ott, d2u) 

in the box B = [0, l]* in Rd, with periodic boundary conditions on the 
boundary dB. Here the solution u:RxB -► R? is a smooth vector function 

of time t and space x, and 

(2) F:RxBxRq xRdq x R?" -> B? 

is a smooth vector function of time, space, u and the collection of first and 
second partial derivatives (du, d2u). We assume T is periodic with period 1 in 
x and satisfies a linearized ellipticity condition. Since this does not guarantee 
well-posedness, we assume our system has a unique smooth solution on the 

time interval of interest. 
Our method combines an extrapolated linearly implicit Euler time dis- 

cretization with a fast spectrally-accurate method for solving linear variable- 
coefficient elliptic systems. This gives arbitrary order accuracy in time and 
spectral accuracy in space at optimal cost.   We validate the method with 



numerical results, including mean curvature systems and phase field models 

of solidification. 

2-D vortex methods for incompressible flow 

• We have studied vortex methods for incompressible 2-D flows both as 
the simplest examples of level-set-based moving boundary techniques and as 
solvers for the convection in the melt around a growing crystal. In 1992- 
4, we developed a new second-order accurate "triangulated" vortex method 
which solved the long-standing problem of long-time inaccuracy in traditional 
vortex methods [6]. A summary of [6] follows. 

Vortex methods for inviscid incompressible two-dimensional fluid flow are 
usually based on blob approximations. This paper presents a vortex method 
in which the vorticity is approximated by a piecewise polynomial interpolant 
on a Delaunay triangulation of the vortices. An efficient reconstruction of 
the Delaunay triangulation at each step makes the method accurate for long 
times. The vertices of the triangulation move with the fluid velocity, which 
is reconstructed from the vorticity via a simplified fast multipole method for 
the Biot-Savart law with a continuous source distribution. The initial distri- 
bution of vortices is constructed from the initial vorticity field by an adaptive 
approximation method which produces good accuracy even for discontinuous 

initial data. 
Numerical results show that the method is highly accurate over long time 

intervals. Experiments with single and multiple circular and elliptical rotat- 
ing patches of both piecewise constant and smooth vorticity indicate that 
the method produces much smaller errors than blob methods with the same 
number of degrees of freedom, at little additional cost. 

Generalizations to domains with boundaries, viscous flow and three space 

dimensions are discussed. 
• In 1994-5, we carried this line of research further. First, we developed 

an important tool for constructing quadrature formulas for singular integral 
operators in several dimensions, as reported in [8]; a summary follows. 

Many numerical problems require the evaluation of integrals 

(3) / f{*)dx, 

where B is a D-dimensional subset of Rd and / is an integrable function on 
B. Many methods have been devised for the numerical calculation of such 



integrals, each useful for certain values of D and d and certain classes of B 
and /. In the case d = D = 1 an extensive literature exists, while in d > 1 
dimensions much less work has been done. 

This paper focuses on the evaluation of such integrals in the following 

common situation. 
(a) B is a rectangle [a,b] := [aubi] x ... x [ad,bd]. 
(b) We are given values f(xj) of / at W points Xj not of our choosing. 
(c) We are given an integrable but singular function a : B —> Rs, which 

is Ck away from a lower-dimensional subset S of B, and / has the form 

(4) f{x) = v(x) • <r(x) + </>(*), 

where y? : B —► Rs and iß : B -* R. are unknown Cfc functions on B. 
We construct two rules for numerical integration. First, we construct a 

rule W with weights Wj, 1 < j < N, which integrates smooth functions 

accurately: 

(5) Jt,Wjg(xj)= I g(x)dx + EN, 

where EN decreases rapidly as A^ -» oo if g is smooth enough and the points 
Xj happen to be distributed appropriately. For example, EN - 0(N~k/d) if 
g is Ck and the points are uniformly distributed on B, where k is the order 
of accuracy of the rule. The computation of W requires 0(N(k2d + log2 N)) 
time and 0(k2d + N) space. Precise error bounds are proven and numerical 

examples are given. 
Second, we construct a rule w with weights WJ which integrates singular 

functions accurately. The singular rule w has the "local correction" property 
that WJ = Wj except for a small number of j's, those for which XJ is near the 
singular set. This property is important in the application of fast algorithms 
to the efficient evaluation of families of singular integrals. The computation 
of those Wj's differing from Wj requires 0(k3d) time. Error bounds are proved 

and numerical results are given . 
These general rules are constructed with certain specific classes of appli- 

cations in mind, including computational fluid dynamics, potential theory 
and crystal growth. These applications require the application of integral 

operators 
(6) «(*)= [ K(x,x'Mx')dx' 



where K has known singular behavior on a lower-dimensional set but u is (at 
least piecewise) smooth. Typically K is singular at a single point, we know 
u>(sj) at N points Sj, and we would like to approximate M values u(U) at 
points U € Rd. We have no control over the location of the Sj and would like 
to avoid the artificial viscosity produced by interpolating, so we take the s/s 

as given. 
A classical approach to this problem is product integration. Here we 

approximate u{U) by a rule of the form 

N 

(7) Ui = J2I{iMsj) 

with Kij chosen to integrate some class of w exactly for each i. This isaMxiV 
matrix multiplication, so it costs O(MN) work, which is very expensive when 
M and N are large. This has been a stumbling block in computational fluid 
dynamics, potential theory for the Laplace equation, and crystal growth. 
Product integration also tends to require difficult, expensive, and sometimes 
impossible algebraic manipulations and evaluation of integrals in closed form. 
A major objective of this paper is to eliminate the calculations required by 
product integration, and replace them with a single general-purpose method 
which produces locally corrected quadrature rules of arbitrary order for any 

given singularity. 
More recently, fast summation methods have been developed for several 

kernels K. These methods evaluate the discrete sum 

(8) Ui = £) K(U, Sj)WM*i)       1 < • < M 

to accuracy e, in 0((N + M) log e) work. Such methods have been developed 
for vortex methods, potential theory and Gaussian kernels. However, these 
methods cannot be combined with product integration, where the weights 

depend on the point of evaluation U. 
Another class of recently-developed fast methods is aimed more directly at 

the continuous problem. These methods are related to product integration in 
some cases, usually have a fixed and not too high order of accuracy, and tend 
to be slower than fast methods for discrete sums. Like product integration, 
they sometimes require difficult and expensive algebraic manipulations and 
evaluation of integrals which can be carried out only in special cases. 



Singular quadrature rules of the type developed in this paper allow the 
application of fast algorithms for discrete sums to the continuous problem, 
because Wj are independent of the point of evaluation U except for a few 
points near the singularity. Thus fast methods can be applied to the sum 
with weights Wj, and then «,• can be corrected locally to get an accurate 
and inexpensive approximation of u(U). This observation was apparently 
first made by Rokhlin, who developed one-dimensional singular endpoint- 
corrected trapezoidal rules. It has been applied to one-dimensional integral 
equations by Starr. 

Our method requires knowledge of the singularity a(x) only in the weak 
sense that we need modified moments 

(9) /      PQ(x)a{x)dx 
JBnC 

over rectangles C, with P„ a suitable family of multidimensional orthogonal 
polynomials. Obtaining these moments is itself a highly nontrivial task in 
this generality, with many possibilities depending on the singularity and on 
B. We have implemented, as part of our method, a general multidimensional 
adaptive Gaussian quadrature code, with a novel error estimator, which may 
be of some independent interest. It is sufficient for vortex methods and for 
volume potentials in potential theory, and hence for the solution of variable- 
coefficient elliptic partial differential equations as in [3]. Numerical results 
indicate that it is competitive with standard codes in dimensions d = 2 and 
d = S. 

The techniques presented in this paper generalize immediately to solve 
several other problems of considerable interest. We can approximate and 
differentiate functions known at arbitrary points, a technique which is useful 
in many computational problems. We can integrate singular functions over 
more general domains, such as curves and surfaces. Several such generaliza- 
tions, along with several refinements of the basic method, are discussed in 

[8]. 
• The quadrature rules developed in [8] allowed us to produce new 2-D 

vortex methods of arbitrary order with excellent long-time accuracy proper- 
ties, as reported in [7]; a summary follows. 

Vortex methods are powerful and sophisticated numerical methods for 
computing incompressible turbulent flows Because they are grid-free and 
naturally adaptive, they create little or no numerical diffusion and preserve 



features which other methods may distort. Vortex methods are particularly 
useful when computing free-surface, free-space and external flows, because 
only the support of the vorticity need be discretized. 

A typical vortex method involves several steps; velocity evaluation, vor- 
tex motion, diffusion and boundary conditions. In this paper, we focus on 
the most expensive and difficult step, the velocity evaluation. We employ 
standard techniques for the vortex motion and consider inviscid free-space 
flow to eliminate diffusion and boundary conditions. General background 
material on vortex methods is presented in Section 2. 

The standard velocity evaluation approximates the Biot-Savart law by a 
fixed quadrature rule, with weights conserved by incompressibility and inde- 
pendent of the singularity in the Biot-Savart kernel. Smoothing is required 
to make the quadrature rule accurate. 

There are three major and interrelated difficulties with the standard ap- 
proach. First, the use of fixed quadrature weights loses accuracy as the flow 
becomes disorganized. Perlman and Beale and Majda observed large os- 
cillations in the error during long-time integrations. These oscillations are 
not present in triangulated vortex methods, regridded methods, or Beale's 
method, which generate new weights at each step. Second, smoothing is re- 
quired because the quadrature weights ignore the singularity; this lowers the 
order of convergence. Third, if any product integration or similar techniques 
are used to treat the singularity, the variable weights preclude the use of the 
fast multipole method on which the practicality of the method depends. 

This paper presents a different velocity evaluation method which over- 
comes these difficulties. A new quadrature rule at each step preserves long- 
time accuracy. Smoothing is unnecessary since the method integrates the 
Biot-Savart law with order-g accuracy for any fixed q. Only the nearby 
weights vary with the singularity, so the fast multipole method can still be 

applied. 
Our method is described in Section 3. It is based on locally-corrected 

quadrature rules for multidimensional singular kernels as developed in [8] 
and proceeds in stages. First a data structure groups the N vortices into 
cells convenient for integration. Then a global order-*? quadrature rule which 
ignores the singularity is built. The fast multipole method evaluates this 
rule efficiently (yielding a regridded vortex method if smoothing is used). 
Finally, we correct the weights of vortices near the evaluation point and 
the appropriate terms of the velocity, using the detailed calculations from 



Appendix A. 
Numerical results presented in Section 4 show that this method has sev- 

eral nice features. It runs in 0(N log N) CPU time with N vortices and 
achieves essentially qth. order accuracy for any specified q. It deals effec- 
tively with arbitrary initial distributions of vortices. Long-time accuracy is 
preserved. The method is naturally parallel since each point is corrected 

independently. 
The method extends naturally to 3-D calculations, Navier-Stokes equa- 

tions, and flows in bounded domains. It is equipped with a natural interpo- 
lation which gives the vorticity at any point. 

• In 1995-6, we developed new methods based on the smooth quadrature 
rules developed under prior support from this grant [8]. A summary of the 
results presented in [9] follows. 

We present a new approach to vortex methods for the 2D Euler equations. 
We obtain long-time high-order accuracy at almost optimal cost by using 
three tools: fast adaptive quadrature rules, a. free-Lagrangian formulation, 
and a nonstandard error analysis. Our error analysis halves the differentia- 
bility required of the flow, suggests an efficient new balance of smoothing 
parameters, and combines naturally with fast summation schemes. Numer- 
ical experiments with our methods confirm our theoretical predictions and 
display excellent long-time accuracy. 

Vortex methods solve the 2D incompressible Euler equations in the vor- 
ticity formulation by discretizing the Biot-Savart law with the aid of the flow 
map. They have been extensively studied, widely generalized and applied to 
complex high-Reynolds-number flows. 

Vortex methods involve several components: velocity evaluation, vortex 
motion, diffusion, boundary conditions and regridding. In this paper, we 
improve the speed, accuracy and robustness of the velocity evaluation. We 
eliminate the flow map, improve the quadrature used for the Biot-Savart 
law, and analyze the error in a nonstandard way, requiring less differentiabil- 
ity of the flow and obtaining efficient new parameter balances. We employ 
standard techniques for the vortex motion and consider inviscid free-space 
flow to eliminate diffusion and boundary conditions. Our approach combines 
naturally with regridding and fast summation methods. 

First, we review Lagrangian vortex methods. These move the nodes of a 
fixed quadrature rule with the computed fluid velocity, preserving the weights 
of the rule by incompressibility. This procedure loses accuracy when the flow 

9 



becomes disorganized, motivating many regridding techniques. Even before 
the flow becomes disorganized, however, obtaining high-order accuracy with 
a fixed quadrature rule requires smoothing of the singular Biot-Savart kernel. 
Smoothing gives high-order accuracy for short times but slows down fast ve- 
locity evaluation techniques and halves the order of accuracy relative to the 
differentiability of the flow. We review two free-Lagrangian vortex methods, 
the triangulated vortex method we developed in 1993-4 and our quadrature- 
based method of 1994-5. Triangulated vortex methods are robust, practical 
and efficient but limited to second-order accuracy. Quadrature-based meth- 
ods compute adaptive quadratures tailored to the Biot-Savart kernel at each 
time step, yielding long-time high-order accuracy at asymptotically optimal 

cost. 
The present paper develops a free-Lagrangian method which couples ker- 

nel smoothing with adaptive quadrature rules not tailored to the Biot-Savart 
kernel, producing long-time high-order accuracy. The asymptotic slowdown 
produced by kernel smoothing is almost eliminated by a careful choice of 
smoothing functions and parameters, based on a new error analysis of the 
velocity evaluation. This analysis requires about half as many derivatives of 
the solution as the standard approach. 

The structure of our method is standard: At each time step, the smoothed 
velocity is evaluated once and the vortices are moved with an explicit multi- 
step method. The velocity evaluation is nonstandard: First, a data structure 
groups the N vortices into cells convenient for integration. Then a global 
ovdev-q quadrature rule is built. Finally, the fast multipole method is used 
with this rule to evaluate the smoothed velocity field. 

The error is measured for standard test problems and our theoretical 
predictions are fully verified. Then more complex flows are computed. 
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